US009141428B2

a2 United States Patent (10) Patent No.: US 9,141,428 B2
Ito et al. (45) Date of Patent: Sep. 22, 2015
(54) INFORMATION PROCESSING APPARATUS USPC oo 719/319

AND INFORMATION PROCESSING METHOD

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)
(72) Inventors: Hidenobu Ito, Kawasaki (JP); Kazuaki
Nimura, Kawasaki (JP); Yosuke
Nakamura, Kawasaki (JP)
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 13/750,274
(22) Filed: Jan. 25, 2013
(65) Prior Publication Data
US 2013/0326533 Al Dec. 5, 2013
(30) Foreign Application Priority Data
May 31,2012 (IP) coeoereererirecrcccnen 2012-124554
(51) Imt.ClL
GO6F 3/00 (2006.01)
GO6F 9/44 (2006.01)
GOG6F 9/46 (2006.01)
GO6F 13/00 (2006.01)
GO6F 9/50 (2006.01)
GO6F 21/51 (2013.01)
GO6F 21/62 (2013.01)
(52) US.CL
CPCcccee. GO6F 9/5016 (2013.01); GO6F 21/51
(2013.01); GOG6F 21/6209 (2013.01)
(58) Field of Classification Search

CPC GO6F 9/5016; GOG6F 21/51; GOGF 21/6209

ISSUE APPLICATION EXECUTION
INSTRUCTION

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0161996
2003/0074656
2003/0191951
2004/0091114
2006/0210082
2010/0205274
2012/0317233

Al* 10/2002
Al 4/2003
Al* 10/2003
Al 5/2004
Al* 9/2006
Al 8/2010
Al* 12/2012

Kovedetal. 713/150
Irino
Cross
Carter et al.

Devadas et al. 380/277
Gharabally et al.

Redpath

713/189

709/218

FOREIGN PATENT DOCUMENTS

JP
JP
JP
WO

8/2002
3/2006
8/2010
4/2004

2002-222081

2006-510958

2010-182309
WO 2004/034184 A2

* cited by examiner

Primary Examiner — Timothy A Mudrick
(74) Attorney, Agent, or Firm — Oblon, McClelland, Maier
& Neustadt, L.L.P.

(57) ABSTRACT

An information processing apparatus executes an application
program including an application resource and a runtime. The
information processing apparatus includes a memory, and a
processor that executes a procedure in the memory. The pro-
cedure includes generating a process space in the memory to
invoke the application program, loading the runtime into the
process space, loading the application resource into the pro-
cess space into which the runtime is loaded, generating a
process of the application program based on the application
resource and the runtime which are loaded into the process
space, and executing the process of the application program.

20 Claims, 12 Drawing Sheets

ISSUE START-UP INSTRUCTION CF
RUNTIME

GENERATE PROCESS SPACE IN MEMORY

LOAD RUNTIME

S103
REQUEST KEY OF APPLICATION
RESOWRCE

S

ACQUIRE KEY OF APPLICATION
RESOURCE

S104

S105

LOAD APPLICATION RESOURCE

5106

DECRYPT KEY OF APPLICATION RESOURCE
DECRYPT APPLICATION RESQURCE
GENERATE PROCESS

S109

St

U.S. Patent Sep. 22, 2015 Sheet 1 of 12 US 9,141,428 B2

FIG. 1
200
APPLICATION
SERVER
<100
MOBLLE
TERMINAL 0
100
MOBILE

TERMINAL

U.S. Patent Sep. 22, 2015 Sheet 2 of 12 US 9,141,428 B2
FIG. 2
106 107 <108
LCD TOUCH SCREEN SENSOR
< Bl
101
N5 104 102
RF CIRQUIT CPU MAIN MEMORY
5103
AUXILIARY MEMORY
5 1500 5 1200a
1000 | APPLICATION | [APPLICATION
5 MANAGER RESOURCE
APPLICATION 5 1600 5 12000
PROGRAM | 1 &y MANAGER !
51100 1300
0s RUN TIME
MOBILE TERMINAL

¢
100

U.S. Patent Sep. 22, 2015 Sheet 3 of 12 US 9,141,428 B2

FIG. 3
sl <204
NETWORK
ks CONTROLLER
<203
SYSTEM < B2
CONTROLLER s
s DISK
MAIN MEMORY CONTROLLER
£ 206
AUXILIARY MEMORY
<1200
APPLICATION
520 RESOURCE
APPLICATION < 1200b
PROGRAM APPLICATION
RESOURCE
52100 51300
0S RUN TIME
APPLICATION SERVER

¢
200

U.S. Patent

Sep. 22, 2015 Sheet 4 of 12

FIG. 4A

51400a

APPLICATION RESOURCE

RUN TIME

APPLICATION PROGRAM

1200a
1300

FIG. 4B

14000

APPLICATION PROGRAM

APPLICATION RESOURCE

~-1200b

RUN TIME

~-1300

US 9,141,428 B2

U.S. Patent

Sep. 22, 2015

Sheet 5 of 12

FIG. S

US 9,141,428 B2

(1

TRANSMISSION/
RECEPTION UNIT
4

g gval

DOWNLOAD
UNIT

118

<110

APPLICATION START-
UP INSTRUCTION
RECEPTION UNIT

| g

LAUNCHER

UNIT

s

MEMORY
MANAGEMENT UNIT

| o183

RUNTIME LOAD
UNIT

151

APPLICATION

S

y

\
ACCESS
MANAGEMENT UNIT
h

RESQURCELOAD AT
§ 515

+ 5120

DECRYPTING

A

UNIT

KEY MANAGEMENT
UNIT

| 16

PROCESS
GENERATION UNIT

| | PROCESS

<17

A

EXECUTION UNIT

MOBILE TERMINAL

124

KEY STORE

¢
100

U.S. Patent

Sep. 22, 2015 Sheet 6 of 12 US 9,141,428 B2
FIG. 6
T
N
ACCESS CONTROL
USER ID USER GROUP OTHERS

app-12345 WX - -
app-67890 WX W -

U.S. Patent

Sep. 22, 2015

FIG. 7

Sheet 7 of 12

US 9,141,428 B2

S

APPLICATION

RECEPTION UNIT

y sl

APPLICATION KEY
GENERATION UNIT

v 5213

APPLICATION

Y

x

A

ENCRYPTION UNIT

+ 524

APPLICATION

APPLICATION
RESOURCE

~-1200a

APPLICATION

STORING UNIT

L s

KEY ENCRYPTION
UNIT

1 g6

PUSH CONTROL
UNIT

| g

TRANSMISSION/

h 4

RESOURCE

~1200b

—___ STORAGEUNT

1700
URL

A

RECEPTION UNIT

APPLICATION SERVER

¢
200

U.S. Patent Sep. 22, 2015 Sheet 8 of 12 US 9,141,428 B2
FIG. 8
(START)
51921 y
< ISURLOF APPLICATIONIS N\ _NO
RECEIVED? 4
YES
TRANSMISSION INSTRUCTION OF 512
DOWNLOAD REQUEST -
A 4
TRANSMISSION REQUEST OF APPLICATION (- 5123 S12
RESOURCE v S
STORE KEY INTO KEY STORE
RECEIVE APPLICATION RESOURCE 5124
Y
STORE APPLICATION RESOURCE INTO 518
DATA AREA OF STORAGE UNIT

(El‘\l'D)

U.S. Patent

5101

Sep. 22, 2015 Sheet 9 of 12 US 9,141,428 B2
FIG. 9
(START)

-

Bl

§)
< IS THERE START-UP INSTRUCTION NO
OF APPLICATION?

YES]
ISSUE APPLICATION EXECUTION ”~
INSTRUCTION ~
A
ISSUESTART-Up DSTRUCTION OF | | 107
REQUEST KEY OF APPLICATION
w RESOURCE
GENERATE PROCESS SPACE IN MEMORY |~ 5104 P
A
y ACQUIRE KEY OF APPLICATION
LOAD RUNTIME 5105 RESOURCE
A 4
LOAD APPLICATION RESOURCE |~ 5106

ad

Y

DECRYPT KEY OF APPLICATION RESOURCE ~- S109

Y

DECRYPT APPLICATION RESOURCE S110

\ 4

GENERATE PROCESS - Sli1
EXECUTE PROCESS L S112
, S
< ISTHEREFILEACCESS? ~ >—
1ves (S
< ISFILEACCESSALLOWED? >—
LYES
EXECUTE FILE ACCESS 5115

d

<%

Can)

US 9,141,428 B2

Sheet 10 of 12

Sep. 22, 2015

U.S. Patent

[~ TW

00T~ YNIWRAL JTIE0W - }
LINN 39%401S
A |aooer$ 40021
¥4)
THOLS ATX JNLINDY ~00€T
=l _ %
% X/
0011 SO \ \
v V<~ Y
HOVNYW A ¥INIq Ol YIANA O ¥INNa O
0091 5 oosT S aoogT 5 00T S
WIAYOINMOA | [¥3HONNVT mzw;_a mzwza
40067 5 200ST S 00€1 00€T
DUN0STY DIN0ST
SN NOLLYOI Tdd¥ NOLLYoTdY ||| NOLLYDIday
00al Q0021 5 e0071 S,
$53004d 353004
S
. W
oL ®I4

US 9,141,428 B2

Sheet 11 of 12

Sep. 22, 2015

U.S. Patent

T

001 ~| YNIWYAL JTE0W
T INNBWolS 000)
b7l %ama 0/l
e~ | Q00er
THOLS AT INLINNY
il
0071~ 50
s V<7 ¥
WIOVNYW AN I O] YIAYA O] A O]
0097 5 00515 aooeT S 00sT S
¥3QYOINMOd | [u3roNNYT mzw_,_a mzmza
wmw<z<z NOLLYDLlddY JLINT JWLLNM
00ST 10 553004 10 SSI0Ud __
70T~ AYOWIW NIVW r
]
. N
L1 "©DI4

U.S. Patent Sep. 22, 2015 Sheet 12 of 12 US 9,141,428 B2

FIG. 12
500
S 5 200A
PUSH SERVER APPLICATION
L1 SERVER
MOBILE

TERMINAL

APPLICATION
STORE

MOBILE
TERMINAL

US 9,141,428 B2

1
INFORMATION PROCESSING APPARATUS
AND INFORMATION PROCESSING METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority from the prior Japanese Patent Application No. 2012-
124554 filed on May 31, 2012, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiment discussed herein is related to an informa-
tion processing apparatus, an information processing
method, and a medium.

BACKGROUND

Inrecentyears, with the widespread availability of wireless
networks, such as 3G/LTE (Long Term Evolution) and hot
spots develop, for example, an environment is provided in
which an information processing apparatus such as a smart-
phone may be connected to a network at all times.

An information processing system is developed which
delivers an application program from an application server
(application store) to an information processing apparatus at
arequested time and causes the information processing appa-
ratus to execute the application program by utilizing such an
environment. Also an information processing system is devel-
oped which provides an application program registered in an
application server to an information processing apparatus
according to a request from a user. In such systems, the
application processing apparatus downloads an application
program delivered from the application server and installs the
application program in a storage device such as a flash
memory.

Japanese Laid-open Patent Publication No. 2010-182309
is an example of related art.

SUMMARY

According to an aspect of the invention, an information
processing apparatus that executes an application program
including an application resource and a runtime, the informa-
tion processing apparatus including a memory, and a proces-
sor that executes a procedure in the memory, the procedure
including generating a process space in the memory to invoke
the application program, loading the runtime into the process
space, loading the application resource into the process space
into which the runtime is loaded, generating a process of the
application program based on the application resource and
the runtime which are loaded into the process space, and
executing the process of the application program.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG.11s a schematic diagram of an information processing
apparatus according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a schematic diagram of a hardware configuration
of'a mobile terminal according to the embodiment;

FIG. 3 is a schematic diagram of a hardware configuration
of an application server according to the embodiment;

FIGS. 4A and 4B are schematic diagrams of an application
program according to the embodiment;

FIG. 5 is a schematic diagram of functional blocks of the
mobile terminal according to the embodiment;

FIG. 6 is a schematic diagram of an access right table
according to the embodiment;

FIG. 7 is a schematic diagram of functional blocks of the
application server according to the embodiment;

FIG. 8 is a flowchart of downloading application resources
by a CPU of the mobile terminal according to the embodi-
ment;

FIG. 9 is a flowchart of executing an application by the
CPU of the mobile terminal according to the embodiment;

FIG. 10 is a schematic diagram for explaining a restriction
of access to a file stored in a storage unit according to the
embodiment;

FIG. 11 is a schematic diagram for explaining a restriction
of'access to a file stored in the storage unit according to the
embodiment; and

FIG. 12 is a schematic diagram of an information process-
ing apparatus according to a modified example of the embodi-
ment.

DESCRIPTION OF EMBODIMENTS

Hereinafter, an embodiment will be described with refer-
ence to the drawings.

While inventing the present embodiments, observations
were made regarding a related art. Such observations include
the following, for example.

Inarelated art, there are two types of application programs,
which are an application program (called a native application)
that may be directly interpreted and executed by an OS (oper-
ating system) and an application program (called a hybrid
application) including a runtime that may be directly inter-
preted and executed by the OS and resources that may be
interpreted by the runtime. The resource here is a program
written in, for example, HITML or Javascript (registered
trademark). An example of the hybrid application is a Phone-
Gap application. The resource in the hybrid application is
independent from the OS, so that the hybrid application has
an advantage that a developer may easily create application
programs running on different OSes by replacing only a runt-
ime which depends on the OS.

When delivering such a hybrid application to an informa-
tion processing apparatus on which a specific OS is running,
normally, a hybrid application, in which a runtime executable
on the OS and resources are integrated and compiled to be
converted into a native application format executable on the
08, is delivered.

However, when installing a plurality of hybrid applications
that use the same runtime into an information processing
apparatus, the same runtime is included in all the hybrid
applications, so that a storage area is uselessly consumed.
Some OSes require user’s operation by display a confirma-
tion screen when installing a native application. For example,
in Android, when installing an application, a screen for deter-
mining whether or not to allow use of devices (GPS, accel-
eration sensor, and the like) that will be used by the applica-
tion is displayed and the application may be installed only
after the user presses a consent button. This is a useful secu-
rity method to avoid installing a malicious application pro-
gram. However, since this method requires a user operation,

US 9,141,428 B2

3

there is a problem that usability degrades in a system in which
many installation operations are performed. General hybrid
applications are delivered in a form converted into the native
application format, so that they have the same problem.

Therefore, when considering a system in which many
hybrid applications are automatically installed and executed,
there are a problem of inefficient consumption of storage area
and a usability problem caused by an increase of user opera-
tions.

FIG.11s a schematic diagram of an information processing
apparatus according to the embodiment.

As illustrated in FIG. 1, the information processing appa-
ratus according to the embodiment includes a mobile terminal
100 and an application server 200. The mobile terminal 100
and the application server 200 are connected to each other
through a network 300. An application in the mobile terminal
100 is executed by runtime interpreting application resources.
Hereinafter, the “application” is described as a function real-
ized when a CPU 101 executes an application program.

Hardware Configuration of Mobile Terminal 100

FIG. 2 is a schematic diagram of a hardware configuration
of the mobile terminal 100 according to the embodiment.

In the embodiment, for example, a smartphone and a tablet
PC (Personal Computer) are assumed to be the mobile termi-
nal 100.

As illustrated in FIG. 2, the mobile terminal 100 according
to the embodiment includes a CPU (Central Processing Unit)
101, a main memory 102, an auxiliary memory 103, an RF
(Radio Frequency) circuit 104, an antenna 105, an LCD (Liq-
uid Crystal Display) 106, a touch screen 107, and various
sensors 108.

The CPU 101, the main memory 102, the auxiliary
memory 103, the RF circuit 104, the LCD 106, the touch
screen 107, and the various sensors 108 are connected to each
other through, for example, a bus B1.

The CPU 101 controls various hardware in the mobile
terminal 100. Further, particular function is realized when the
CPU 101 loads particular program stored in the auxiliary
memory 103 into the main memory 102 and then executes the
program in the main memory 102. The details of each func-
tion will be described later.

The main memory 102 stores various programs to be
executed by the CPU 101. Further, the main memory 102 is
used as a work area of the CPU 101 and stores various data
used for the CPU 101 to execute processing. As the main
memory 102, for example, a RAM (Random Access
Memory) may be used.

The auxiliary memory 103 stores various programs to be
operated on the mobile terminal 100. As the various pro-
grams, for example, an application program 1000, an appli-
cation manager 1500, and a key manager 1600 which are
executed by the CPU 101, an OS 1100 which is an execution
environment of these programs, and application resources
12004 and 12005 and a runtime 1300 which are downloaded
from the application server 200 are stored. Further, the aux-
iliary memory 103 may store application programs down-
loaded from the application server 200 as the various pro-
grams.

Although the type of the OS 1100 is not particularly lim-
ited, Android (registered trademark) is used in the embodi-
ment. The OS 1100 realizes a memory management unit 112,
a runtime load unit 113, a process execution unit 117, and an
access management unit 118, which will be described later,
by being executed by the CPU 101.

The runtime 1300 is a kind of native application that may
be directly interpreted and executed by the OS 1100. The
runtime 1300 is compiled along with the application

10

15

20

25

30

35

40

45

50

55

60

65

4

resources 1200a and 12005 so that a hybrid application is
formed. The runtime 1300 performs an application resource
load unit 114 and a process generation unit 116, which will be
described later, by being executed by the CPU 101. Further,
the runtime 1300 includes an 1/O driver 1300D. The I/O driver
1300D realizes a decrypting unit 115 described later by being
executed by the CPU 101. Although, in the embodiment, the
I/O driver 1300D is included in the runtime 1300, the embodi-
ment is not limited to this.

The application manager 1500 includes a launcher 15004
and a downloader 15005 (not illustrated in FIG. 2). The
launcher 15004 performs an application start-up instruction
reception unit 110 and a launcher unit 111, which will be
described later, by being executed by the CPU 101. The
downloader 15005 performs a download unit 121 described
later by being executed by the CPU 101. The key manager
1600 performs a key management unit 120 described later by
being executed by the CPU 101.

As the auxiliary memory 203, for example, a non-volatile
memory, such as a hard disk or a flash memory, may be used.
The details of the application resources 1200a and 12006 and
the runtime 1300 will be described later.

The RF circuit 104 is controlled by the CPU 101 and
transmits a high frequency signal from the antenna 105 to
another wireless communication apparatus. Further, the RF
circuit 104 converts a high frequency signal received by the
antenna 105 into a baseband signal and sends the baseband
signal to the CPU 101.

The LCD 106 is controlled by the CPU 101 and displays
image information to a user. The touch screen 107 is attached
to a display screen of the LCD 106 and detects a contact
position at which, for example, a finger of a user comes into
contact with the touch screen 107. Touch screen 107 may be
called a touch panel.

Each of the various sensors 108 is controlled by the CPU
101 and acquires state information of the mobile terminal
100. As the sensors 108, for example, an acceleration sensor,
a gyro sensor, an illuminance sensor, a geomagnetic sensor, a
tilt sensor, a pressure sensor, an approach sensor, a tempera-
ture sensor, a 3G, a wireless LAN, and a GPS module may be
used.

Hardware Configuration of Application Server 200

FIG. 3 is a schematic diagram of a hardware configuration
of the application server 200 according to the embodiment.

As illustrated in FIG. 3, the application server 200 accord-
ing to the embodiment includes a CPU 201, a main memory
202, a system controller 203, a network controller 204, a disk
controller 205, and an auxiliary storage device 206.

The CPU 201, the main memory 202, the system controller
203, the network controller 204, and the disk controller 205
are connected to each other through, for example, a bus B2.

The CPU 201 controls various hardware in the application
server 200. Further, particular function is realized when the
CPU 201 loads particular program stored in the auxiliary
memory 206 into the main memory 202 and then executes the
program in the main memory 202. The details of each func-
tion will be described later.

The main memory 202 stores various programs to be
executed by the CPU 201. Further, the main memory 202 is
used as a work area of the CPU 201 and stores various data
used for the CPU 201 to execute processing. As the main
memory 202, for example, a RAM may be used.

The system controller 203 is connected to both the CPU
201 and the main memory 202. The system controller 203
controls data transmission between the CPU 201 and the main
memory 202 and data transmission between the CPU 201 and

US 9,141,428 B2

5

the bus B2. Further, the system controller 203 is connected to
the network controller 204 and the disk controller 205
through the bus B2.

The network controller 204 is connected to the mobile
terminal 100 through the network 300 and transmits and
receives various data to and from the mobile terminal 100.

The auxiliary storage device 206 is connected to the disk
controller 205. The auxiliary storage device 206 stores vari-
ous programs. As the various programs, for example, an
application program 2000 which is executed by the CPU 201,
an OS 2100 which is an execution environment of the appli-
cation program 2000, and the application resources 1200a
and 12005 and the runtime 1300 which are to be downloaded
to the mobile terminal 100 are stored. Not only the application
resources 1200q and 12005 but also a native application to be
downloaded to the mobile terminal 100 can be stored in the
auxiliary storage device 206. As the auxiliary storage device
206, for example, a hard disk may be used.

Configurations of Application Programs 1400a and 14005

Here, configurations of the application programs 1400a
and 14005, which are hybrid applications, will be described.

FIGS. 4A and 4B are schematic diagrams of the application
programs 1400a and 14006 according to the embodiment.
FIGS. 4A and 4B illustrate the application programs 1400a
and 14005 for different applications from each other.

As illustrated in FIGS. 4A and 4B, the application pro-
grams 1400a and 14005 executed by the mobile terminal 100
are hybrid applications and include the application resources
12004 and 12005 which are created for each application and
the runtime 1300 which is common to the applications.

The application resources 1200a and 12006 are, for
example, program files developed by an application devel-
oper. The application resources 1200a and 12005 do not have
an executable format that may be interpreted by the OS 1100,
so that the application resources 1200a and 12005 are recog-
nized as data files by the OS 1100. The application resources
12004 and 12005 are written in, for example, HTML or Java
(registered trademark) script.

The runtime 1300 provides an execution environment to
execute the application resources 1200a and 12005 as appli-
cation programs to the mobile terminal 100. The runtime
1300 is a kind of native application and has an executable
format that may be interpreted by the OS 1100, so that the
runtime 1300 is recognized as an application program by the
08 1100.

Functional Blocks of Mobile Terminal 100

FIG. 5 is a schematic diagram of functional blocks of the
mobile terminal 100 according to the embodiment.

As illustrated in FIG. 5, the mobile terminal 100 according
to the embodiment includes the application start-up instruc-
tion reception unit 110, the launcher unit 111, the memory
management unit 112, the runtime load unit 113, the appli-
cation resource load unit 114, the decrypting unit 115, the
process generation unit 116, the process execution unit 117,
the access management unit 118, the key management unit
120, the download unit 121, a storage unit 123, and akey store
124.

Any of the application start-up instruction reception unit
110, the launcher unit 111, the memory management unit
112, the runtime load unit 113, the application resource load
unit 114, the decrypting unit 115, the process generation unit
116, the process execution unit 117, the access management
unit 118, the key management unit 120, the download unit
121, the storage unit 123, and the key store 124 are realized by
the CPU 101 executing various programs read into the main
memory 102.

10

15

20

25

30

35

40

45

50

55

60

65

6

The application start-up instruction reception unit 110
receives an application start-up instruction from the applica-
tion server 200 and notifies the launcher unit 111 of the
application start-up instruction. The application start-up
instruction specifies the application resource 1200a or 12005
and instructs start-up of the application resource 1200a or
12005.

The launcher unit 111 issues a start-up instruction of the
runtime 1300 with the specified application resource 1200a
or 12006 as an argument on the basis of the application
start-up instruction from the application start-up instruction
reception unit 110. Further, the runtime 111 requests a key to
decrypt the specified application resource 1200a or 12005
from the key management unit 120. However, start-up
mechanism in the embodiment is not limited to this. For
example, when a user taps an icon, the launcher unit 111 may
issue a start-up instruction of the runtime 1300 with the appli-
cation resource 12004 or 12005 corresponding to the icon as
an argument.

The memory management unit 112 generates a process
space to execute the specified application resource 1200a or
12005 in the main memory 102 on the basis of the start-up
instruction of the runtime 1300. The process space is a secure
memory space that is separate for each process of a program
executed by the CPU 101.

The runtime load unit 113 loads the runtime 1300 stored in
the storage unit 123 into the process space generated by the
memory management unit 112.

The application resource load unit 114 loads the specified
application resource 1200a or 12005 into the process space
into which the runtime 1300 is loaded on the basis of an
instruction from the runtime load unit 113. Further, the appli-
cation resource load unit 114 may load a resource into the
process space into which the runtime 1300 is loaded on the
basis of an instruction from the process execution unit 117.

The decrypting unit 115 decrypts a key transterred fromthe
key management unit 120. Further, the decrypting unit 115
operates as a part of the runtime 1300 and decrypts the appli-
cation resource 1200a or 12005, which is loaded into the
process space, in the process space by using the decrypted
key.

The process generation unit 116 generates a process of the
application program 14004 or 14005 by integrating and com-
piling the application resource 1200a or 12005 and the runt-
ime 1300 which are loaded into the process space.

The process execution unit 117 executes a process of the
application program 1400a or 14005 generated in the process
space. Further, the process execution unit 117 may instruct
the application resource load unit 114 to load a resource used
to execute the process while the process is being executed.

The access management unit 118 allows or restricts file
access by the process execution unit 117 or the application
resource load unit 114 on the basis of an access permission
given in an access right table. The file access means one of
reading, writing, or executing the application resource 1200a
or 12005 and various application programs, which are stored
in the storage unit 123.

The key management unit 120 acquires a key to decrypt the
application resource 12004 or 12005 from the key store 124
on the basis of the request from the launcher unit 111. The key
acquired from the key store 124 is stored in the key manage-
ment unit 120. Further, the key management unit 120 encrypts
thekey acquired from the key store 124 by using, for example,
a key generated based on information unique to the mobile
terminal 100 and transfers the encrypted key to the decrypting
unit 115. For example, a function of inter-process communi-
cation provided by the OS 1100 may be used to transfer the

US 9,141,428 B2

7

key. In the embodiment, when Android is used as the OS
1100, the Intent mechanism may be used for example.

The download unit 121 receives the application resource
12004 or 12005 transmitted from the application server 200
via a transmission/reception unit 122 and stores the applica-
tion resource 12004g or 12005 in a data area Rd of the storage
unit 123. Further, the download unit 121 may receive a runt-
ime and an application program as a native application stored
in the application server 200 from the transmission/reception
unit 122 in addition to the application resource 1200a or
12005 and store the runtime and the application program in
the storage unit 123. However, the runtime and the applica-
tion program as a native application are stored in an applica-
tion area different from the data area Rd of the storage unit
123.

When a URL 1700 of the application resource 1200a or
12005 is transmitted from the application server 200, the
download unit 121 may instruct the transmission/reception
unit 122 to transmit a transmission request of the application
resource 1200a or 12005.

The transmission/reception unit 122 receives an encrypted
application resource 1200a transmitted from the application
server 200. When the URL 1700 of the application resource
12004 or 12005 is transmitted from the application server
200, the transmission/reception unit 122 transmits the trans-
mission request of the application resource 1200a or 12005
specified by the URL 1700 to the application server 200 on
the basis of the instruction from the download unit 121. When
a token sent with the request, the transmission/reception unit
122 may transmit the transmission request including the
token as additional information. That can prevent the mobile
terminal which does not receive the request from getting the
application.

For example, the storage unit 123 is constructed in the
auxiliary memory 103 of the mobile terminal 100. The stor-
age unit 123 stores, for example, the application program
1000, the OS 1100, the application resources 1200a and
12005, the runtime 1300, and something like that. Further, an
access permission provided by the OS 1100 is set to files
stored in the storage unit 123.

For example, the key store 124 is constructed in the auxil-
iary memory 103 of the mobile terminal 100. The key store
124 stores a key to decrypt the application resource 1200a or
12005. The keys stored in the key store 124 are desired to be
protected more securely than the other data by using a hard-
ware function or the like. For example, by using TRUST-
ZONE function included in some ARM processors, it may be
possible to stop malicious software from taking out a key.

Although, in the embodiment, the key store 124 is con-
structed in the auxiliary memory 103, the embodiment is not
limited to this. For example, a memory chip is provided
separately from the auxiliary memory 103 in which the appli-
cation resource 1200a or 12005 is stored, and the key store
124 may be constructed in the memory chip.

Access Right Table T

Here, the access right set in the application program by the
OS 1100 will be described.

FIG. 6 is a schematic diagram of the access right table T
according to the embodiment.

As illustrated in FIG. 6, the access right table T according
to the embodiment associates a User ID of an application
program with an access right to the application program (ac-
cess control). In the embodiment, Android is used as the OS
1100, so that a unique name associated with a name of an
application (“Runtime”, “App”, and the like) is assigned to a
User ID. For example, it is assumed that a name “app-12345~
is assigned to “Runtime” and a name “appp-67890” is

10

15

20

25

30

35

40

45

50

55

60

65

8

assigned to “App”. In FIG. 6, “r”, “w”, and
readable, writable, and executable respectively.

For example, when focusing on a field W in the access right
table T, “r”, “w”, and “x” are assigned to an application
program whose User ID is “app-12345~, that is, the runtime
1300, as an access right of User (owner). It means that a
process of the runtime 1300 has permission to read, write, and
execute data owned by the runtime 1300 stored in the storage
unit 123.

Functional Blocks of Application Server 200

FIG. 7 is a schematic diagram of functional blocks of the
application server 200 according to the embodiment.

As illustrated in FIG. 7, the application server 200 accord-
ing to the embodiment includes an application reception unit
211, an application key generation unit 212, an application
encryption unit 213, an application storing unit 214, a key
encryption unit 215, a push control unit 216, a transmission/
reception unit 217, and a storage unit 218.

The application reception unit 211, the application key
generation unit 212, the application encryption unit 213, the
application storing unit 214, the key encryption unit 215, the
push controlunit 216, and the transmission/reception unit 217
are realized by the CPU 201 executing various programs load
into the main memory 202.

The application reception unit 211 receives registration of
the application resources 1200a and 120056 developed by an
application developer. The application reception unit 211
may receive registration of an application program as a native
application in addition to the application resources.

The application key generation unit 212 generates a key to
encrypt a specified application resource 1200a or 12005. The
key is generated based on the application resource 1200a or
12005 and information unique to the mobile terminal 100 of
a transmission destination and is unique to each application
and the mobile terminal 100 of a transmission destination.
The method of encryption is not particularly limited.

The application encryption unit 213 encrypts the applica-
tion resource 1200a or 12005 by using the key generated by
the application key generation unit 212.

The application storing unit 214 stores the application
resource 1200a or 12005 encrypted by the application
encryption unit 213 into the storage unit 218.

The key encryption unit 215 encrypts the key to encrypt the
application resource 1200a or 12005 by using a key generated
based on information unique to the mobile terminal 100.

The push control unit 216 instructs the transmission/recep-
tion unit 217 to transmit the application resource 1200a or
12005 or the URL 1700 of the application resource 1200a or
12005 and the key generated by the application key genera-
tion unit 212 on the basis of, for example, position informa-
tion acquired from a sensor of the mobile terminal 100 and
context information. Further, as auxiliary information, token
information to acquire a specified application may be added.

The transmission/reception unit 217 transmits the URL
1700 or the application resource 1200a or 12005 stored in the
storage unit 218 and the key to decrypt the URL 1700 or the
application resource 12004 or 12005 to the mobile terminal
100 on the basis of the instruction from the push control unit
216.

For example, the storage unit 218 is constructed in the
auxiliary storage device 206 of the application server 200.
The storage unit 218 stores, for example, the application
program 2000, the OS 2100, the application resources 1200a
and 12005, and the like. Further, the storage unit 218 may
store the runtime 1300.

Download of Application Resource by CPU 101 of Mobile
Terminal 100

[TaRt)

X represent

US 9,141,428 B2

9

FIG. 8 is a flowchart of downloading the application
resource 1200a or 120056 by the CPU 101 of the mobile
terminal 100 according to the embodiment.

As illustrated in FIG. 8, the transmission/reception unit
122 determines whether or not the URL 1700 of the applica-
tion transmitted from the application server 200 is received
(step S121).

Here, if it is determined that the URL 1700 of the applica-
tion is received (Yes in step S121), the download unit 121
instructs the transmission/reception unit 122 to transmit a
download request for the application resource (here, the
application resource 1200a) specified by the URL 1700 (step
S122).

On the other hand, if it is determined that the URL 1700 of
the application is not received (No in step S121), the trans-
mission/reception unit 122 continues to determine whether or
not the URL 1700 of the application is received (step S121).

The application server 200 transmits a key to decrypt the
application resource 1200a along with the transmission of the
URL 1700 of the application. The transmission/reception unit
122 transfers the key transmitted from the application server
200 to the key management unit 120. Then, the key manage-
ment unit 120 stores the key transferred from the transmis-
sion/reception unit 122 into the key store 124 (step S126). At
this time, the key management unit 120 stores the key into the
key store 124 after decrypting the key transferred from the
application server 200 by using a key unique to the mobile
terminal 100.

Next, the transmission/reception unit 122 transmits a trans-
mission request of the specified application resource 1200a to
the application server 200 on the basis of the download
request from the download unit 121 (step S123). When there
is a token, the transmission/reception unit 122 may transmit
the transmission request including the token as additional
information. Thereby, the application server 200 transmits the
specified application resource 1200q to the mobile terminal
100.

The application resource 1200a transmitted from the appli-
cation server 200 is encrypted by a key unique to the appli-
cation resource 12004 and the mobile terminal 100. There-
fore, the transmission/reception unit 122 of the mobile
terminal 100 receives the encrypted application resource
12004 (step S124). Then, the transmission/reception unit 122
transfers the application resource 1200a to the download unit
121.

Next, the download unit 121 stores the application resource
12004 transferred from the transmission/reception unit 122
into the storage unit 123 (step S125). At this time, because the
mobile terminal 100 recognizes the application resource
12004 as only a data file, the application resource 1200a is
stored in the data area of the storage unit 123.

An access permission whose User (owner) is the runtime
1300 is set to each data file at this time. Therefore, only a
process of the runtime 1300 can access the data files stored in
the data area Rd of the storage unit 123. In other words, any
process which the user Id is the runtime 1300 can access the
data files stored in the data area Rd of the storage unit 123.

Then, the download of the application resource 1200a is
completed.

The download of the application resource is performed
every time an execution instruction of an application is
issued. Therefore, for example, when the application resource
12004 is downloaded and then further an execution instruc-
tion of another application (here, an application of the appli-
cation resource 12005) is issued, the application resource
12005 is stored in the storage unit 123 through the same
procedure as described above. At this time, the application

30

40

45

55

10

resource 12006 is recognized as only a data file, so that the
application resource 12005 is stored in the data area Rd where
the application resource 1200q is stored.

As described above, when the mobile terminal 100 accord-
ing to the embodiment downloads a plurality of application
resources 1200a and 12005 from the application server 200,
all the application resources 1200a and 12005 are stored in
the common data area Rd as data files and the same access
permission whose User (owner) is the runtime 1300 is set to
each data file.

Here, the mobile terminal 100 transmits a download
request to the application server 200 on the basis of the URL
1700 of the application transmitted from the application
server 200. However, the embodiment is not limited to this.
For example, the application server 200 may transmit the
application resource 1200a or 12005, which is determined to
be desirable by the application server 200, to the mobile
terminal 100 on the basis of information, such as position
information acquired from a sensor of the mobile terminal
100 and context information. In other words, when the
requested application resource 1200a or 12005 is transmitted
to the mobile terminal 100 on the basis of the determination of
the application server 200, steps S121 to S124 described
above are omitted.

Execution of Application by CPU 101 of Mobile Terminal
100

FIG. 9 is a flowchart of executing an application by the
CPU 101 of the mobile terminal 100 according to the embodi-
ment. FIG. 10 is a schematic diagram for explaining a restric-
tion of access to a file stored in the storage unit 123 according
to the embodiment. FIG. 11 is a schematic diagram for
explaining a restriction of access to a file stored in the storage
unit 123 according to the embodiment.

In the description below, it is assumed that the application
resources 12004 and 12005 and the runtime 1300 are stored in
the storage unit 123 of the mobile terminal 100.

As illustrated in FIG. 9, first, the application start-up
instruction reception unit 110 determines whether or not a
start-up instruction of an application (here, application of the
application resource 1200a) transmitted from the application
server 200 is received (step S101). When the application
resource 1200q is transmitted from the application server
200, it may be determined that the start-up instruction of an
application is received.

Here, if' it is determined that the start-up instruction of an
application is received (Yes in step S101), the application
start-up instruction reception unit 110 issues an application
execution instruction to the launcher unit 111 (step S102).

On the other hand, if it is determined that the start-up
instruction of an application is not received (No in step S101),
the application start-up instruction reception unit 110 con-
tinuously determines whether or not a start-up instruction of
an application is received (step S101).

Next, the launcher unit 111 issues a start-up instruction of
the runtime 1300 with a file name of the specified application
resource 1200a as an argument on the basis of the application
execution instruction from the application start-up instruction
reception unit 110 (step S103).

Further, the launcher unit 111 requests a key to decrypt the
specified application resource 1200a from the key manage-
ment unit 120 (step S107).

Next, the memory management unit 112 generates a pro-
cess space M1 to execute the runtime 1300 and the applica-
tion resource 1200a in the main memory 102 (step S104).

Next, the runtime load unit 113 loads the runtime 1300
stored in the storage unit 123 into the process space M1

US 9,141,428 B2

11

generated by the memory management unit 112 (step S105).
Thereby, a process of the runtime 1300 is generated in the
process space M1.

Next, the application resource load unit 114 further loads
the application resource 1200a into the process space M1 into
which the runtime 1300 is loaded (step S106).

In parallel with the above, the key management unit 120
acquires a key to decrypt the application resource 1200a from
the key store 124 on the basis of the request from the launcher
unit 111 (step S108). Further, the key management unit 120
encrypts the key acquired from the key store 124. The
encrypted key is transferred to the decrypting unit 115 by
using a function of inter-process communication provided by
the OS 1100. The method of encryption is not particularly
limited.

Next, the decrypting unit 115 decrypts the key transferred
from the key management unit 120 (step S109) and decrypts
the application resource 1200a loaded into the process space
M1 by using the decrypted key (step S110). In other words,
the application resource 1200q is loaded into the process
space M1 and then decrypted (converted into a plain text).

Next, the process generation unit 116 generates a process
P1 of the application program 1400 in the process space M1
by integrating and compiling the application resource 1200a
decrypted by the decrypting unit 115 and the runtime 1300
(step S111).

The process P1 is a process of the application program
14004, which is a hybrid application including the application
resource 1200a and the runtime 1300. However, the OS 1100
recognizes the application resource 1200a as only data, so
that the OS 1100 recognizes the process P1 as a process of the
runtime 1300.

Next, the process execution unit 117 executes the process
P1 of' the application program 1400a (step S112).

Next, the access management unit 118 determines whether
or not the process P1 executed by the process execution unit
117 requires an access to a file stored in the storage unit 123
(step S113).

Here, if it is determined that the process P1 requires an
access to an application resource (for example, icon image)
(Yes in step S113), the access management unit 118 refers to
an access permission in the access right table T and deter-
mines whether the access is valid or not (step S114).

On the other hand, if it is determined that the process P1
does not requires an access to an application resource (No in
step S113), the process execution unit 117 continuously
executes the process P1 of the application program 1400a
(step S112).

When it is determined that the process P1 requires an
access to an application resource (Yes in step S113) and the
process P1 is allowed to access the application resource (Yes
in step S114), the process execution unit 117 accesses the
application resource, such as reading, writing, or executing
the application resource stored in the storage unit 123 (step
S115).

The mobile terminal 100 according to the embodiment
performs the series of processes described above for each
execution of an application. Therefore, for example, when
another application (here, the application of the application
resource 12005) is executed after the process P1 of the appli-
cation program 1400q is generated, a process P2 of the appli-
cation program 14004 is generated. Furthermore, both the
processes P1 and P2 of the application programs 1400a and
14005 are recognized as a process of the runtime 1300.

Therefore, as indicated by arrows A in FIG. 10, the process
P1 and the process P2 are allowed to access both the applica-
tion resources 1200a and 12005 stored in the data area Rd of

15

25

40

45

55

12

the storage unit 123. If this is left unattended, for example,
when the process P1 is a malicious process, the process P1
may make an unauthorized access to the application resource
12005 stored in the storage unit 123 and tamper the applica-
tion resource 12004.

Therefore, in the embodiment, the application resources
12004 and 12005 stored in the data area Rd of the storage unit
123 are individually encrypted by using a different key for
each application resource. Further, the process P1 has only a
key to decrypt the application resource 1200a of the process
P1 and the process P2 has only a key to decrypt the application
resource 12005 of the process P2.

Therefore, the process P1 may possibly not perform read-
ing, writing, or executing the application resource 12005
stored in data area Rd of the storage unit 123. Similarly, the
process P2 may not perform reading, writing, or executing the
application resource 1200q stored in data area Rd of the
storage unit 123.

Thereby, even if an application resource downloaded to the
mobile terminal 100 performs a malicious operation in the
mobile terminal 100, it is possible to protect the application
resources 1200a and 12004 stored in the data area Rd of the
storage unit 123 from, for example, a threat of unauthorized
access.

Further, the application resource load unit 114 executes
loading the application resource 1200a or 12005 as a process
of the runtime 1300. Therefore, as indicated by arrows B in
FIG. 11, processes of the runtime 1300 are allowed to access
both the application resources 1200a and 12005 stored in the
data area Rd of the storage unit 123.

However, in the embodiment, as described above, the
application resources 1200a and 12005 stored in the data area
Rd of the storage unit 123 are individually encrypted by one
of keys different from each other. Further, a process of the
runtime 1300 has only a key to decrypt a specified application
resource 1200a or 12005.

Therefore, a process of the runtime 1300 started with the
application resource 1200q as an argument may not read the
application resource 12005 stored in the data area Rd of the
storage unit 123. Similarly, a process of the runtime 1300
started with the application resource 120056 as an argument
may not read the application resource 1200a stored in the data
area Rd of the storage unit 123.

Thereby, when the mobile terminal 100 tries to execute the
application program 14004, the process of the runtime 1300
does notread the application resource 12005 stored in the data
area Rd of the storage unit 123. On the other hand, when the
mobile terminal 100 tries to execute the application program
14005, the process of the runtime 1300 does not read the
application resource 1200a stored in the data area Rd of the
storage unit 123. As a result, the mobile terminal 100 accord-
ing to the embodiment may reliably execute the specified
application.

According to the embodiment, the process P1 or P2 of the
application program 14004 or 14005 is generated by down-
loading the application resource 1200a or 12005 from the
application server 200 and executing the process P1 or P2 of
the application program 1400a or 14005 on the runtime 1300
pre-installed in the mobile terminal 100.

Therefore, itis possible to reduce the amount of data down-
loaded from the application server 200 by the amount of data
of the runtime 1300. Further, the mobile terminal 100 does
not recognize the application resources 1200a and 12006 as
an application program, so that when the application resource
12004 or 12005 is downloaded, no confirmation display (con-
sent button or the like) is generated for a user of the mobile
terminal 100. Therefore, it is possible to realize reduction of

US 9,141,428 B2

13

cumbersome feeling of the user of the mobile terminal 100
and reduction of inefficient consumption of the storage area
of the mobile terminal 100.

Further, according to the embodiment, every time the
application resources 1200a and 12005 are executed, the
process spaces M1 and M2 separated from each other are
generated and a set of the runtime 1300 and the application
resource 1200a and a set of the runtime 1300 and the appli-
cation resource 12005 are loaded into the process spaces M1
and M2 respectively. In other words, a plurality of application
resources 1200a and 12005 are not loaded into the process
space M1 or M2. Therefore, a plurality of application
resources 12004 and 12005 do not interfere with each other in
the process space M1 or M2.

According to the embodiment, the application resources
12004 and 12005 stored in the data area Rd of the storage unit
123 are individually encrypted by one of keys different from
each other. Further, the process P1 is given only a key to
decrypt the application resource 12004 of the process P1 and
the process P2 is given only a key to decrypt the application
resource 12005 of the process P2. Therefore, the processes P1
and P2 can only access their own application resources in the
application resources stored in the data area Rd of the storage
unit 123. Thereby, it is possible to protect the application
resources 1200a and 12005 stored in the storage unit 123 of
the mobile terminal 100 from, for example, a risk of unau-
thorized access due to a malicious application resource.

Further, it is possible to obtain the function described
above by only adding the application resource load unit 114,
the decrypting unit 115, and the process generation unit 116,
which are performed by the runtime 1300, the launcher unit
111 and the download unit 121 which are performed by the
application manager 1500, and the key management unit 120
which is performed by the key manager 1600 (in other words,
by still using the existing OS 1100).

MODIFIED EXAMPLE

FIG. 12 is a schematic diagram of an information process-
ing apparatus according to a modified example of the embodi-
ment.

Although, in the embodiment described above, the appli-
cation server 200 includes a function to store the application
resource and a function to push the application resource, the
embodiment is not limited to this.

For example, as illustrated in FIG. 12, it is possible to use
an application server 200A which does not include the func-
tion to store the application resource and the function to push
the application resource. In this case, an application store 400
including the storage unit 218 that stores the application
resource and a push server 500 including the push control unit
216 that controls push of the application resource are pro-
vided separately and the application store 400 and the push
server 500 may be connected to each other through the net-
work 300.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in under-
standing the invention and the concepts contributed by the
inventor to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and
conditions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although the embodiment of the
present invention has been described in detail, it should be
understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.

5

10

15

20

25

30

35

40

45

50

60

65

14

What is claimed is:

1. An information processing apparatus that executes
application programs, the information processing apparatus
comprising:

a memory; and

a processor coupled to the memory and configured to:

generate a first process space in the memory to invoke a
first application program of the application programs,

generate a second process space to invoke a second
application program, the second process space being
separate from the first process space,

load a runtime for the application programs into the first
process space,

load a first application resource for executing the first
application program into the first process space,

generate a first process of the first application program
based on the first application resource and the runtime
which are loaded into the first process space,

execute the first process of the first application program
in the first process space separately from the second
process space,

load the runtime into the second process space,

load a second application resource for executing the
second application program into the second process
space,

generate a second process of the second application
program based on the second application resource and
the runtime which are loaded into the second process
space, and

execute the second process of the second application
program in the second process space separately from
the first process space, wherein

the first and second application programs are hybrid appli-

cation programs, and

the runtime is a native application program which enables

an application source to be executed as one of the appli-
cation programs.

2. The information processing apparatus according to
claim 1, wherein

the first application resource to be loaded into the first

process space is encrypted in a storage,

the second application resource to be loaded into the sec-

ond process space is encrypted in a storage, and

the processor is further configured to:

manage a first key to decrypt the encrypted first appli-
cation resource,

manage a second key to decrypt the encrypted second
application resource,

decrypt the encrypted first application resource loaded
into the first process space by the first key, and

decrypt the encrypted second application resource
loaded into the second process space by the second
key.

3. The information processing apparatus according to
claim 2, wherein the processor is further configured to:

encrypt the first key and the second key,

decrypt the encrypted first key and the encrypted second

key,

decrypt the first application resource loaded into the first

process space by the decrypted first key, and

decrypt the second application resource loaded into the

second process space by the decrypted second key.

4. The information processing apparatus according to
claim 3, wherein

the processor is further configured to:

request the first key based on a start-up instruction of the
first application program, and

US 9,141,428 B2

15

request the second key based on a start-up instruction of
the second application program.

5. The information processing apparatus according to
claim 2, wherein

the memory stores a plurality of application resources

encrypted by different keys each of which is used for one
of the application programs.

6. The information processing apparatus of claim 1,
wherein

the first application resource and the second application

resource are stored in the information processing appa-
ratus separately from the runtime.

7. The information processing apparatus of claim 1,
wherein

the first application resource to be loaded into the first

process space is encrypted in a storage.

8. The information processing apparatus of claim 7,
wherein the processor is configured to:

load the encrypted first application resource from the stor-

age into the first process space, and

provide only the first process with a first key to decrypt the

encrypted first application resource which is loaded into
the first process space.

9. The information processing apparatus of claim 8,
wherein

the processor is further configured not to provide the sec-

ond process with the key.

10. The information processing apparatus of claim 8,
wherein

the second application resource to be loaded into the sec-

ond process space is encrypted in the storage, and

the processor is further configured to:

load the encrypted second application resource from the
storage into the second process space, and

provide only the second process with a second key to
decrypt the decrypted second application resource
which is loaded into the second process space.

11. The information processing apparatus of claim 8,
wherein the processor is further configured to:

encrypt the first key to be provided only the first process,

and

decrypt the encrypted first key when decrypting the

encrypted first application resource which is loaded into
the first process space.

12. The information processing apparatus of claim 1,
wherein

the first application resource includes a first program for

executing the first application program, a first image
being accessed when the first application program is
executed, or a combination thereof.

13. The information processing apparatus of claim 12,
wherein the first program is based on one of Hyper Text
Markup Language and JavaScript.

14. The information processing apparatus of claim 12,
wherein the first image is an icon image for the first applica-
tion program.

15. The information processing apparatus of claim 1,
wherein the first application resource has been developed in a
specific application development environment on a premise
of the runtime that is configured to decrypt an encrypted
application resource.

16. The information processing apparatus of claim 1,
wherein the first application resource is distributed to the
information processing apparatus separately from the runt-
ime.

17. The information processing apparatus of claim 1,
wherein

15

30

35

40

45

50

55

60

16

the first and second application programs are hybrid appli-

cation programs, and

the runtime is a native application program which enables

an application source to be executed as one of the appli-
cation programs.
18. An information processing method of an information
processing apparatus that executes application programs, the
information processing method comprising:
generating a first process space in a memory to invoke a
first application program of the application programs,

generating a second process space to invoke a second appli-
cation program, the second process space being separate
from the first process space;

loading a runtime for the application programs into the first

process space;
loading a first application resource for executing the first
application program into the first process space;

generating a first process of the first application program
based on the first application resource and the runtime
which are loaded into the first process space;

executing the first process of the first application program

in the first process space separately from the second
process space;

loading the runtime into the second process space,

loading a second application resource for executing the

second application program into the second process
space,

generating a second process of the second application pro-

gram based on the second application resource and the
runtime which are loaded into the second process space,
and

executing the second process of the second application

program in the second process space separately from the
first process space, wherein

the first and second application programs are hybrid appli-

cation programs, and

the runtime is a native application program which enables

an application source to be executed as one of the appli-
cation programs.

19. The information processing method according to claim
18, wherein

the loading the first application resource includes loading

an encrypted first application resource into the first pro-
cess space, the encrypted first application resource being
encrypted by a first key,

the loading the second application resource includes load-

ing an encrypted second application resource into the
second process space, the encrypted second application
resource being encrypted by a second key, and
the information processing method further includes:
decrypting the encrypted first application resource
loaded into the first process space by the first key, and
decrypting the encrypted second application resource
loaded into the second process space by the second
key.
20. A non-transitory medium for storing a program of an
information processing apparatus that executes application
programs, the program causing the information processing
apparatus to execute a process, the process comprising:
generating a first process space in a memory to invoke a
first application program of the application programs,

generating a second process space to invoke a second appli-
cation program, the second process space being separate
from the first process space;

loading a runtime for the application programs into the first

process space;

US 9,141,428 B2

17

loading a first application resource for executing the first
application program into the first process space;

generating a first process of the first application program
on the basis of the first application resource and the
runtime which are loaded into the first process space;

executing the first process of the first application program
in the first process space separately from the second
process space,

loading the runtime into the second process space,

loading a second application resource for executing the
second application program into the second process
space,

generating a second process of the second application pro-
gram based on the second application resource and the
runtime which are loaded into the second process space,
and

executing the second process of the second application
program in the second process space separately from the
first process space, wherein

the first and second application programs are hybrid appli-
cation programs, and

the runtime is a native application program which enables
an application source to be executed as one of the appli-
cation programs.

#* #* #* #* #*

10

15

20

25

18

